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THE MATHEMATICAL GAZE I'E 

Walking and running 

R. McNEILL ALEXANDER 

Complex bodies 
The human body is a complicated machine whose movements involve 

many different joints, operated by a great many muscles. For that reason it is 
easy to get bogged down in detail when thinking about walking and running 
from a mathematical point of view. 

Any position of the human body (or of any other jointed mechanism) can 
be described by giving the angles of joints. The number of angles needed for 
an unambiguous description is the number of degrees of freedom of the 
mechanism. For example, the position of a hinge joint is described by just 
one angle: a hinge allows only one degree of freedom. The human knee is a 
hinge. The ankle, however, allows rotation about two axes - you can tilt 
your foot toes up or toes down, and you can also rock it sideways so that the 
sole faces inwards towards the other foot - so it gives two degrees of 
freedom. The hip is a ball and socket joint allowing rotation about any axis 
through the centre of the ball, but any position can be described by just three 
angles (measured, for example, in three planes at right angles to each other), 
so it allows three degrees of freedom. In total, there are six degrees of 
freedom in each leg, making twelve in all, and suggesting that we need 
twelve equations of motion to describe walking. If we took account of the 
flexibility of the foot and the movements of the arms, we would need more. 

A set of twelve simultaneous equations is daunting enough, but the 
problem seems worse when we look more deeply into the anatomy of the 
leg. One mathematical model of walking identified 29 important muscles in 
each leg, 58 in all. You may want to know the force each muscle should 
exert, at each stage of the stride, but you cannot evaluate 58 unknown 
variables by solving a set of only twelve simultaneous equations. 

A simple model 
The situation looks less bad when you devise simplified models. Look 

at someone walking and try to find the essence of the movement. The feet 
move alternately, each being lifted just after the other is set down. While a 
foot is on the ground, that leg's knee is almost straight, keeping the distance 
from hip to ankle almost constant. As a result, our bodies rise and fall (by 
about three centimetres) in each step. We are highest when the straight, 
supporting leg is vertical. 

These features of walking are represented in the ultra-simple model 
shown in Figure 1(a). Each foot is set down as the other is lifted. While its 
foot is on the ground, each leg is straight, so the body rises and falls in a 
series of arcs of circles. We will ignore the masses of the legs, putting all the 
mass in the rigid trunk. 
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(a) A simple model of human (b) A diagram of the racing walk. By 
walking tilting the hips at stage (ii), the 

athlete avoids raising the body's 
FIGURE 1 centre of mass as high as she or he 

otherwise would. 

Now we have to remember that a body moving in an arc of a circle has 
an acceleration towards the centre of the circle. This acceleration is (speed2)/ 
radius: in the case of our walker, the radius is leg length L, so if the speed is 
v the acceleration is v2/L. At stage (ii) (Figure l(a)) this acceleration is 
vertically downwards. The walker cannot fall with an acceleration greater 
than gravitational g so 

v /L < g 
v < (gL)? (1) 

This equation tells us that there is a maximum possible walking speed. 
My legs are 0.9 metre long and the gravitational acceleration is 10 m/s2 so 
my theoretical maximum walking speed is (10 x 0.9)/ = 3 m/s. The fastest I 
can actually walk without breaking into a run is a little less than that, about 
2.6 m/s. 

Human adults (including me) prefer to change from walking to running 
when our speed reaches 2 m/s. Measurements of oxygen consumption show 
that below that speed walking needs less energy than running; and above 2 
m/s, running is the more economical gait. But we can walk at speeds 
approaching 3 m/s. And (with an exception to be mentioned soon) we 
cannot walk faster. 

My grandson, aged two, has much shorter legs than mine, only 0.4 m 
long. The theory says he cannot walk faster than (10 x 0.4)/2 = 2 m/s. That 
seems to explain why, unless I walk slowly, he has to run to keep up with 
me. 

The gravitational acceleration is 10 m/s2 here but only 1.6 m/s2 on the 
moon. Maximum walking speed there should be (1.6 x 0.9)2 = 1.2 m/s. The 
astronauts did not walk on the moon but bounded, perhaps because walking 
would have been intolerably slow. 

So far, the simple theory is doing well. It has explained why adults 
cannot walk faster than 3 m/s, why small children have to run to keep up 
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with us and why the astronauts did not walk on the moon. But here is a 
puzzle. Athletes in walking races travel at up to 4.4 m/s (that is the men's 
world record speed, for the 10 kilometre walk). Can champion athletes 
break the laws of mechanics? Of course they cannot. They go faster than 
the model could go by moving in a way the model cannot, wiggling their 
hips so as to reduce the rise and fall of the body's centre of mass (Figure 
l(b)). That reduces the vertical acceleration needed, for travelling at any 
given speed. The model can only tell us the maximum speed for a walker 
whose movements match the model's assumptions. 

Dynamic similarity 
We humans use just two gaits, walking and running. Horses, dogs and 

other four-legged mammals have three principal gaits: the walk, trot and 
gallop. Can we predict the speeds at which different-sized mammals should 
change gaits? If a horse breaks into a gallop at 6 m/s, at what speed should 
a dog do the same? 

Non-human animals do not walk on straight legs, so Figure 1(a) does not 
model them well. We will try a more general approach, starting from the 
familiar concept of geometric similarity. Two shapes are geometrically 
similar if one is a scale model of the other: that is, if one could be made 
identical to the other by multiplying all its linear dimensions by the same 
factor. Animals of different sizes are not geometrically similar (a horse is 
not just an oversized dog) but there is enough similarity for it to seem 
sensible to ask, what if they were geometrically similar? 

Dynamic similarity is a concept that applies to moving systems. Two 
systems are dynamically similar if one could be made identical to the other 
by multiplying all lengths by one factor; all times by another factor; and all 
forces by a third factor. For example, two pendulums of different lengths, 
swinging through the same angle, have dynamically similar motion. In what 
circumstances could different-sized animals move in dynamically similar 
ways? Their bodies must be geometrically similar, and they must move at 
appropriate speeds. 

As animals walk or run, they rise and fall in each stride, gaining and 
losing potential energy. They also speed up and slow down in each stride, 
gaining and losing kinetic energy. Some energy gets swapped back and 
forth (pendulum fashion) between the potential and kinetic forms. It seems 
clear (and it can be shown more rigorously) that dynamic similarity will be 
possible only if the two animals have equal ratios of potential to kinetic 
energy. If an animal of mass m is supported on legs of length L it has 
potential energy mgL. If it is travelling at speed v, its kinetic energy is 
/2m2. 

kinetic energy ?/2mv 1 v2 (2) 

potential energy mgL 2 gL 
Dynamic similarity is possible for animals of different sizes only if their 

speeds are such as to give them equal values of (v2 / gL). 
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The dimensionless quantity v2/ gL is called a Froude number after the 
Victorian engineer who used similar numbers in an analysis of wave 
resistance to the motion of ships - but that is another story. It links with our 
earlier discussion because equation (1) can be written in a different way: 

for walking v2/gL < 1. (3) 
You cannot walk with a Froude number greater than one (unless, of course, 
you use the racing walk). 

The advantage of the Froude number concept is that it is not tied to a 
particular model of walking, such as the one shown in Figure l(a). It 
suggests a general hypothesis: similar-shaped animals of different sizes will 
tend to move in dynamically similar ways whenever possible - that is, when 
their Froude numbers are equal. They will make corresponding gait changes 
(from walk to trot, or from trot to gallop) at speeds which make their Froude 
numbers equal. Compare a dog with a horse whose legs are four times as 
long. To have the same Froude number, the horse must travel at twice the 
speed of the dog (two is the square root of four). It should make each gait 
change at twice the speed at which the dog makes the same change. This 
turns out to be roughly true. More generally, mammals ranging from small 
rodents to giraffes change from walking to trotting at a Froude number of 
about 0.5, and from trotting to galloping at a Froude number of about 2.5. 

Dynamically similar movement implies more than just changing gaits at 
equal Froude numbers. It implies, for example, taking strides in proportion 
to leg length: when dogs and horses travel with equal Froude numbers we 
can expect the horses' strides to be four times as long as the dogs'. More 
generally, we can expect graphs of (stride length/leg length) against Froude 
number to be the same for different-sized animals. Figure 2 shows that this 
is reasonably nearly true for animals ranging from dogs to elephants, and 
including two-legged as well as four-legged species. Do not be surprised 
that the same relationship holds for bipeds as for quadrupeds: except when it 
gallops, a horse resembles two people running one behind the other. 

Dinosaur speeds 
Figure 2 has been used in an unexpected way, to estimate the speeds of 

dinosaurs. Footprints have been found of many kinds of dinosaurs - 
footprints made in mud which has subsequently changed to stone. From 
these we can measure stride length, the distance from (say) a left hind 
footprint to the next print of the same foot. Also, from the size of the prints, 
we can estimate the size of the dinosaur that made them. Thus we can 
estimate (stride length/leg length). With this information, using the graph, 
we can estimate the Froude number at which the dinosaurs were walking or 
running - and since we have an estimate of leg length, we can translate the 
Froude number to a speed. This approach enables us to calculate, very 
roughly, the speeds of dinosaurs from the spacing of their footprints. 

The results may seem just a little disappointing: big dinosaurs usually 
moved slowly. Quite a lot of footprints have been found in Texas and 
elsewhere of large brontosaurs, animals weighing around 30 tonnes, or six 
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FIGURE 2 A graph of (stride length/leg length) against the square root of Froude 
number for humans and various animals. Each animal is represented by several 
points, recording observations of it moving at different speeds. The square root of 
Froude number is plotted, rather than Froude number itself, to avoid undue clumping 
of points in the lower range of speeds. 

times as much as a large elephant. All these seem to show speeds of about 
one metre per second, which is a slow walking speed for humans and seems 
painfully slow for such giants. Footprints have also been found of 
carnivorous (tyrannosaur-like) dinosaurs of up to 5 tonnes. These show 
speeds of around 2 m/s, a fast walk for humans. Large dinosaurs seem to 
have moved slowly, at human walking speeds. They may occasionally have 
gone faster, but no footprints of their running have been found. There are 
some footprints of smaller dinosaurs going faster; notably a half-tonne biped 
going at an estimated 12 m/s, which is faster than any human athlete (up to 
11 m/s) but considerably slower than a racehorse (17 m/s). Regrettably we 
have no way of checking whether these estimates of dinosaur speeds are 
correct. 

Some biomechanicists have devised detailed mechanical models of the 
human body, imitating as much as possible of its complexity. Some of these 
models have given valuable insight into movements such as walking and 
running. But this article has shown that a very simple model (Figure l(a)) 
can illuminate the basic principles of walking and running. And the simple 
concept of dynamic similarity has enabled us to draw together information 
about the movements of a wide range of living animals. It has even enabled 
us to speculate about dinosaur speeds. 

Further reading 
R. McN. Alexander, Dynamics of dinosaurs and other extinct giants, 
Columbia University Press, New York (1989). 
R. McN. Alexander, The Human Machine, Natural History Museum 
Publications, London (1992). 

R. McNEILL ALEXANDER 

Department of Pure and Applied Biology, University of Leeds, LS2 9JT 
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