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Variation and covariation of skulls and teeth: modern carnivores 
and the interpretation of fossil mammals 

Tamar Dayan, David Wool, and Daniel Simberloff 

Abstract. Teeth are generally the best-preserved elements among mammal fossil remains and are 
highly diagnostic characters. Consequently, much mammalian paleontological, systematic, and 
evolutionary research focuses on teeth, so it is important to understand how they vary and covary 
with other characters. Dental traits within populations of carnivores appear to be more variable 
than cranial traits, a pattern that results only partly from their usually smaller size. Furthermore, 
dental traits, although highly correlated with one another, are not highly correlated with cranial 
traits, which are also highly correlated with one another. Thus, teeth and cranial bones may be 
subject to quite different selective pressures and genetic/developmental constraints and may sug- 
gest different microevolutionary scenarios. Vestigial teeth show significantly greater variability 
than expected, reflecting the absence of stabilizing selection. 
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Introduction 
Mammalian teeth are used in a variety of 

ecological and evolutionary studies. Teeth fig- 
ure as indicators of environmental stress (Bad- 
yaev 1998; Klevezal and Sokolov 1999), in sys- 
tematic research (Thackeray 1997), in inter- 
specific and interpopulation comparisons of 
variation (Harris and Rathbun 1989; Bronner 
1996; Suchentrunk and Flux 1996), in studies 
of community structure (Van Valkenbugh and 
Wayne 1994; Dayan and Simberloff 1998), and 
in many other research topics. But first and 
foremost, teeth are the focus of paleontologi- 
cal research. 

Teeth are generally the best-preserved ele- 
ment among vertebrate fossil remains; they 
are durable and easy to identify to taxon and 
therefore play a central role in the study of the 
mammalian fossil record (e.g., West 1979; 
Chaline and Laurin 1986; MacFadden 1986). 
Teeth have been used in describing fossil as- 
semblages (Bermudez-De Castro 1993; Mez- 
zabotta et al. 1995), for systematic studies of 
fossils (Tsoukala 1996), for reconstructing di- 
ets (Hunter and Fortelius 1994), for studying 
evolutionary change through time (Bermudez 
De Castro 1993; Jernvall et al. 1996), and for 
assessing sexual size dimorphism in fossil 

(C) 2002 The Paleontological Society. All rights reserved. 

populations (Gingerich 1981; Leutenegger and 
Shell 1987; Fleagle 1989). In many studies 
tooth size is used as a surrogate for body size, 
a practice justified by the general relationship 
between body size and tooth size among 
mammalian species (e.g., Kurten 1967; Mar- 
shall and Corruccini 1978; Gingerich 1985; 
Koch 1986; Roth 1992). 

Although the extensive use of teeth in pa- 
leontological research mostly derives from ne- 
cessity, researchers often point to its advan- 
tages. Chief among them is that tooth crown 
size is fixed by the cessation of enamel appo- 
sition before tooth eruption and is therefore 
often considered a correlate of body size that 
is free of ontogenetic change (e.g., Gould and 
Garwood 1969; Gingerich 1974; Garn et al. 
1979; Koch 1986). Moreover, tooth measure- 
ments can safely be taken as "adult," whereas 
termination of cranial growth can be deter- 
mined only by complete suture closure, a state 
that is achieved only at a very old age in some 
mammals and is never quite achieved in oth- 
ers. Even later, bone growth can be modulated 
by factors such as muscular development and 
mechanical stress. 

Here we explore some tenets of research on 
mammalian dentitions. We ask whether teeth 
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vary less than cranial characters do within 
populations, as many paleontologists per- 
ceive. We also attempt to determine to what 
extent cranial and dental characters covary. 
Additionally, we ask to what extent natural se- 
lection affects patterns of morphological var- 
iability, by testing whether the variability of 
vestigial teeth differs significantly from the 
general pattern of variation of mammalian 
teeth. We use original data from single pop- 
ulations of two carnivore species: the wolf (Ca- 
nis lupus) and the wildcat (Felis silvestris). We 
also examine data from many populations of 
the short-tail weasel (Mustela erminea) and the 
long-tail weasel (Mustelafrenata) published by 
Holmes (1987). 

Variability of Dental and Cranial Characters.- 
Simpson et al. (1960; 94) described the ratio- 
nale that has guided choice of morphological 
traits for taxonomic purposes: 

One of the essentials of good taxonomy is 
to select characters that are relatively little 
variable within a taxonomic group, for tax- 
onomic comparisons are more easily and 
more reliably based on these than on highly 
variable characters. The coefficient of vari- 
ation is very useful as a guide in the selec- 
tion of such characters, too often merely 
guessed at or accepted with no real criteri- 
on. Obviously, a tooth that is extremely var- 
iable is not a good taxonomic guide; its var- 
iations reflect intraspecific variability and 
not reliable taxonomic differences. 

Some studies have compared the variability 
of different teeth within populations, assum- 
ing the least variable of those has the best di- 
agnostic value (e.g., Gingerich 1974; Gingerich 
and Schoeninger 1979; Gingerich and Winkler 
1979; Roth 1992). Understanding patterns of 
variation in morphological characters is par- 
ticularly important because the degree of var- 
iation is often considered to indicate the num- 
ber of species present in a fossil assemblage 
(Roth 1992; Cope 1993; Cope and Lacy 1995; 
Carrasco 1998). For red fox (Vulpes vulpes), 
Gingerich and Winkler (1979) found that the 
largest teeth, the carnassials, were least vari- 
able, a fact they attributed to functional inte- 
gration. Other studies have demonstrated an 
inverse relationship between size and vari- 

ability in mammalian dentitions, which has 
been variously attributed to developmental 
complexity (Pengilly 1984) and size-related 
bias in the coefficient of variation (Polly 
1998a). 

The ontogenetic considerations discussed 
above suggest that tooth size may be less var- 
iable than cranial or skeletal measurements, 
but this prediction seems not to have been 
tested. We studied patterns of variability of 
dental and cranial characters of carnivores, in 
light of a growing body of literature on vari- 
ability in morphological characters (Yablokov 
1974; Lande 1977; Soule 1982; Pankakoski et 
al. 1987; Kerfoot 1988; Polly 1998a). 

Covariation between Dental and Cranial Char- 
acters.-We examined the covariation between 
dental and cranial characters in order to gain 
insight into patterns of morphological inte- 
gration among these traits. Morphological in- 
tegration may be a source of evolutionary con- 
straint (Zelditch 1996); the way characters 
change may be constrained or facilitated by 
their intrinsic integration (Cheverud 1982). If 
dental characters are used to represent evo- 
lutionary patterns in fossil mammals, it is im- 
portant to understand their patterns of co- 
variation with other morphological charac- 
ters. 

At a broad taxonomic scale, the significance 
of studying the allometric relationships be- 
tween tooth size and body or cranial size has 
often been emphasized (e.g., Creighton 1980; 
Legendre and Roth 1988); understanding this 
relationship allows us to recognize special 
dental adaptations unrelated to the require- 
ments of size (Gould 1975). A series of 
"mouse-to-elephant" plots (see Gould 1975) 
were generated for different taxonomic or eco- 
logically similar groups of mammals, but the 
particular allometric relationships and their 
theoretical interpretation are still controver- 
sial (e.g., Gould 1975; Kay 1975; Gingerich et 
al. 1982; Wolpoff 1985; Fortelius 1990). 

Size change is so covariant among morpho- 
logical traits in general that separate body 
parts are often good estimators of change in 
other parts (McKinney 1990). However, inter- 
specific allometric relationships cannot safely 
be extrapolated to predict relationships with- 
in species; in fact, it remains unclear whether 

509 



TAMAR DAYAN ET AL. 

intraspecific allometric relationships can be 
demonstrated at all. Some studies have shown 
nil correlation within species between dental 
measurements and skull or body size (e.g., 
Kurten 1953; Kieser and Groenveld 1990), and 
physical anthroplogists have long concluded 
that tooth size cannot be used to predict body 
size in human populations (e.g., Garn and 
Lewis 1958; Lavelle 1974; Henderson and Cor- 
ruccini 1976). Wolpoff (1985) suggested that 
changes of tooth size may be a passive corre- 
lated response to changes in body size, or that 
they may result from genetic uncoupling of 
tooth and body size. Likewise, Dayan et al. 
(1989a,b, 1990, 1992) suggested that morpho- 
logical patterns in mammalian skull size may 
be a passive correlated response to natural se- 
lection operating on tooth size. 

Many studies have dealt with the morpho- 
logical integration among crania and mandi- 
bles (e.g., Cheverud 1989, 1995, 1996; Roth 
1996; Smith 1996), but few deal with the mor- 
phological integration of dental and cranial 
characters. Subdividing organisms into natu- 
ral subunits can be done in different ways 
(Roth 1996). We ask whether dental and cra- 
nial characters can be viewed as parts of an 
integrated system in which the relationships 
reflect functional and/or genetic constraints. 
We address this question by studying patterns 
of phenotypic covariation between mammali- 
an teeth and cranial characters within carni- 
vore species. 

Variability of Vestigial Teeth.-Variation is 
what natural selection operates on; under- 
standing morphological variation is therefore 
important for understanding evolutionary 
processes. A tenet of evolutionary theory is 
that, under conditions of stabilizing selection, 
phenotypic variability is inversely related to 
selection intensity (Tague 1997; see also Hoff- 
mann and Merila 1999 for the possible effects 
of favorable and unfavorable environments). 
Many biologists assume that coefficients of 
variation among traits are, in a very rough 
way, related to fitness (Soule 1982); the vari- 
ability of a trait is seen as inversely related to 
the effect of the trait on survival and repro- 
duction (Soule 1982). For example, Gould and 
Garwood (1969) interpreted the lesser vari- 
ability in tooth length than in tooth width as 

reflecting more stringent limitations on tooth- 
row length than on tooth-row width. 

An extreme case of reduced stabilizing se- 
lection is found in vestigial morphological 
structures. Although biologists have long con- 
sidered vesitigial structures to be highly var- 
iable, few studies actually address their mor- 
phological variability (Tague 1997). Simpson 
et al. (1960:94) interpreted the high variability 
of the third upper premolar of Ptilodus mon- 
tanus, a multi-tuberculate: "p3 in this family is 
not functional and is being lost. Organs in this 
condition are usually extremely variable." In 
canids, it has been suggested that the great 
variability in length of the third lower molar 
is because this tooth is vestigial and is there- 
fore free of strong selective pressures (Kurten 
1953, 1954). Alternatively, it has been inter- 
preted as resulting from the very simple oc- 
clusion with the second upper molar (Ginger- 
ich and Winkler 1979). 

We asked whether this tooth, the small third 
lower molar of wolves, does indeed exhibit 
unexpectedly high variability. We also asked 
whether the second upper premolar and first 
upper molar of wildcats, minute teeth, can be 
characterized as vestigial on the basis of their 
variability, with overall patterns of variation 
of teeth and skulls as a backdrop. These teeth 
are exceptionally small and are often absent 
altogether, and the first peglike upper molar 
does not occlude with any tooth of the lower 

jaw. 

Materials and Methods 

Specimens were measured in the Field Mu- 
seum of Natural History (Chicago) and the 
Zoology Museum of the Tel Aviv University 
Zoological Museum. We studied gross dental 
morphology, limiting our dental measure- 
ments to length and width. We measured a 
similar number of cranial characters for com- 
parison (Table 1). Measurements were taken 
with digital calipers to 0.01 mm precision. We 
considered skulls adult and suitable for mea- 
surement at full dental eruption and dorsal 
suture closure, and we did not use specimens 
with worn dentitions. 

We measured the following: 
1. Wolves (Canis lupus) (9 females and 13 

males) from Israel. We measured 39 cranial 
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characters and 27 dental characters. Cranial 
characters were taken according to von den 
Driesch (1976), Harrison (1968), Radinsky 
(1981), and Kurten (personal communication 
1983). Tooth crown measurements were the 
length (L) and width (W) of all teeth (taken ac- 
cording to Kurten [personal communication 
1983]). For upper carnassials we took two 
length measurements (Le, length of the exte- 
rior lobe, and Li, length of the interior lobe) 
and two width measurements (Wa, anterior 
width, and Wbl, blade width). 

2. Wildcats (Felis silvestris) (11 females and 
10 males) from the Upper Nile Province, Su- 
dan. We measured 36 cranial characters and 
19 dental characters (felids have a reduced 
number of teeth). Cranial characters were tak- 
en according to von den Driesch (1976) and 
Radinsky (1981). Dental measurements were 
taken according to Kurten (personal commu- 
nication 1983) as for wolves. 

Variability of Dental and Cranial Characters.- 
We studied variability among dental and cra- 
nial characters using the above data plus ex- 
tensive data on weasels from Holmes (1987). 
Holmes (1987) divided both Mustela erminea 
and M. frenata into a number of local popula- 
tions (or groups of populations). He separated 
the sexes and measured eight cranial and five 
dental measurements. We analyzed all his 
samples with more than ten individuals (sexes 
kept separate). These comprised 36 popula- 
tions of M. erminea and 27 populations of M. 
frenata. 

We calculated coefficients of variation (CV 
= sample standard deviation divided by sam- 
ple mean) for each trait in each sample, then 
regressed CV linearly on mean. We also at- 
tempted to fit the data to a rectangular hy- 
perbola (CV = a/mean + b). 

Measurement Error.-Because CV is a relative 
measure of variation (scaled by the character 
mean), and because dental characters are 
smaller, there should be a systematic tendency 
for measurement errors to be relatively larger 
in dental characters than in cranial ones and 
to contribute more to inter-individual varia- 
tion, measured by CV. In our original data 
sets, each character was measured once only 
on each skull. To check the contribution of 
measurement error to patterns of variability, 

we carried out repeated measurements on 15 
of the wolf skulls, selected because they were 
the best preserved and most complete speci- 
mens. Fifty-nine characters (37 cranial, 22 
dental) were measured on each skull. The en- 
tire set of 15 skulls was measured five times. 
From the original set of measurements, we 
omitted cranial measurements C-M3 and 
vdD15a and dental measurements P2W, P3W, 
P2W, P3W, and P4W. To be objective, we had the 

repeated measurements taken by someone un- 
aware of the previous pattern. This person 
found the seven traits just listed too difficult 
to measure consistently. 

We used single-classification ANOVA, with 
skulls-a model II factor (Sokal and Rohlf 
1981)-as groups and five measurements per 
skull for each of the 60 variables. The within- 
group variance component estimates mea- 
surement error, as percentage of the total var- 
iance. Then the mean of the five measure- 
ments of each character was used to recalcu- 
late the variance (and CV) among the 15 
individuals. 

Covariation between Dental and Cranial Char- 
acters.-For analyses of the interrelationships 
of different traits, we used principal compo- 
nents analysis (PCA) on the correlation matri- 
ces of the wolf and wildcat data sets. We used 
the PCA program of the NTSYS-PC package 
(Rohlf 1986) to extract three components for 
each data set. We plotted the data in the space 
of the first two components. 

Because there are many more characters 
than specimens, there is a high null probabil- 
ity that a PCA would show the data to have 
some structure even if the data had been gen- 
erated by some random algorithm. To guard 
against spurious patterns from this source, we 
attempted cross-validation. We randomly di- 
vided the characters in both the wolf and the 
wildcat data matrices (mixed sexes) into two 
groups, each containing half the dental and 
half the cranial characters, then ran the PCA 
separately on each half. 

Variability of Vestigial Teeth. -The third lower 
molar in wolf dentition may be considered 
vestigial by developmental criteria. The same 
criteria suggest that in wildcats the second 
upper premolar and first upper molar are 
nonfunctional and perhaps vestigial. We test- 
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TABLE 1. Cranial measurements taken on wolves and wildcats. vdD indicates von den Driesch 1976. Subscript 
numbers indicate mandible measurements, and superscript numbers indicate cranial measurements. 

Wolves vdDl Total length: length from condyle process-Infradentale 
Wolves vdD2 Length: the angular process-Infradentale 
Wolves vdD4 Length: the condyle process-aboral border of the canine alveolus 
Wolves vdD7 The aboral border of the alveolus of M3-aboral border of the canine alveolus 
Wolves vdD8 Length of the cheek-tooth row, M3-Pl, measured along the alveoli 
Wolves vdD9 Length of the cheek-tooth row, M3-P2, measured along the alveoli 
Wolves vdDo10 Length of the molar row, measured along the alveoli 
Wolves vdDll Length of the premolar row, Pl-P4, measured along the alveoli 
Wolves vdD,2 Length of the premolar row, P2-P4, measured along the alveoli 
Wolves vdD17 Greatest thickness of the body of jaw (below M1) 
Wolves vdDl8 Height of the vertical ramus: basal point of the angular process-Coronion 
Wolves vdD19 Height of the mandible behind M1, measured on the lingual side and at 

right angles to the basal border 
Wolves vdD20 Height of the mandible between P2 and P3, measured on the lingual side and 

at right angles to the basal border 
Wolves C-M3 Length of the tooth row, canine to M3 
Wolves P2-4 Length of the tooth row, P2-P4, measured at the crown 
Wolves vdDl Total length: Akrokranion-Prosthion 
Wolves vdD2 Condylobasal length: aboral border of the occipital condyles-Prosthion 
Wolves vdD8 Viscerocranium length: Nasion-Prosthion 
Wolves vdD15 Length of cheek-tooth row (measured along the alveoli on the buccal side) 
Wolves vdD15a Aboral border of the alveolus of M3-oral border of the canine alveolus 
Wolves vdD16 Length of the molar row (measured along the alveoli on the buccal side) 
Wolves vdD17 Length of the premolar row (measured along the alveoli on the buccal side) 
Wolves vdD22 Greatest diameter of the auditory bulla (following Wagner 1930: p. 21): from 

the most aboral point of the bulla on the suture with the external carotid 
foramen 

Wolves vdD22a Least diameter of the auditory bulla 
Wolves vdD23 Greatest mastoid breadth = greatest breadth of the occipital triangle: Otion- 

Otion 
Wolves vdD29 Greatest neurocranium breadth = greatest breadth of the braincase: Eury- 

on-Euryon 
Wolves vdD30 Zygomatic breadth: Zygion-Zygion 
Wolves vdD31 Least breadth of skull = least breadth at the postorbital constriction 
Wolves vdD32 Frontal breadth: Ectorbitale-Ectorbitale 
Wolves vdD33 Least breadth between the orbits: Entorbitale-Entorbitale 
Wolves vdD34 Greatest palatal breadth: measured across the outer borders of the alveoli 
Wolves vdD35 Least palatal breadth: measured behind the canines 
Wolves vdD36 Breadth at the canine alveoli 
Wildcats vdD1 Total length: length from the condyle process-Infradentale 
Wildcats vdD2 Length from the indentation between the condyle process and the angular 

process-Infradentale 
Wildcats vdD3 Length: the condyle process-aboral border of the canine alveolus 
Wildcats vdD4 Length from the indentation between the condyle process and the angular 

process-aboral border of the canine alveolus 
Wildcats vdD5 Length of the cheek-tooth row, P3-M1, measured along the alveoli 
Wildcats vdD8 Height of the vertical ramus: basal point of the angular process-Coronion 
Wildcats vdD9 Height of the mandible behind Ml, measured on the buccal side 
Wildcats vdD1o Height of the mandible in front of P3, measured on the buccal side 
Wildcats vdD1 Total length: Akrokranion-Prosthion 
Wildcats vdD2 Condylobasal length: aboral border of the occipital condyles-Prosthion 
Wildcats vdD3 Basal length: Basion-Prosthion 
Wildcats vdD8 Viscerocranium length: Nasion-Prosthion 
Wildcats vdDl0 Lateral length of "snout": oral border of the orbit of one side-Prosthion 
Wildcats vdD12 Length of the cheek-tooth row (measured along the alveoli on the buccal 

side) 
Wildcats vdD13 Length of the premolar row (measured along the alveoli on the buccal side) 
Wildcats vdDl6 Greatest diameter of the auditory bulla: from the most aborolateral point to 

the most oromedial point 
Wildcats vdD17 Least diameter of the auditory bulla: from the middle of the opening of the 

external acoustic meatus up to the most medial protrusion of the bulla on 
the opposite side of the bulla 

Wildcats vdD18 Greatest mastoid breadth = greatest breadth of the occipital triangle: Otion- 
Otion 
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TABLE 1. Continued. 

Wildcats 
Wildcats 
Wildcats 
Wildcats 

Wildcats 
Wildcats 
Wildcats 
Wildcats 
Wildcats 
Wildcats 

Wildcats 
Wolves + wildcats 

Wolves + wildcats 

Wolves + wildcats 

Wolves + wildcats 

Wolves + wildcats 

Wolves + wildcats 

vdD19 Greatest breadth of the occipital condyles 
vdD20 Greatest breadth of the foramen magnum 
vdD21 Height of the foramen magnum: Basion-Opisthion 
vdD22 Greatest neurocranium breadth = greatest breadth of braincase: Euryon- 

Euryon 
vdD23 Zygomatic breadth: Zygion-Zygion 
vdD24 Frontal breadth: Ectorbitale-Ectorbitale 
vdD25 Least breadth between the orbits: Entorbitale-Entorbitale 
vdD26 Greatest palatal breadth: measured across the outer borders of the alveoli 
vdD27 Breadth at the canine alveoli 
vdD28 Least breadth aboral of the supraorbital processes = breadth of the postor- 

bital constriction 
vdD29 Facial breadth between the infraorbital foramina (least distance) 
MAM Moment arm of masseter, measured from the dorsal surface of the condyle 

to the ventral border of the angular process. An estimator of the moment 
arm of the superficial masseter 

MAT Moment arm of temporalis, measured from the condyle to the apex of the 
coronoid process. An estimator of the moment arm of a portion of the 
temporalis 

MFL Masseteric fossa length, measured from the back of the condyle to the most 
anterior point of the masseteric fossa. An estimator of the size of the deep 
masseter and of the moment arm of the deep masseter 

OCPH Occipital height, measured from the midventral border of the foramen mag- 
num to the dorsal rim of the occiput 

TFL Temporal fossa length, measured from the most posterior point of the lamb- 
doidal crest to the back of the supraorbital process. An estimator of tem- 
poralis size 

TRL Tooth-row length, measured parallel to the palatal midline, from a point 
level with the back of the last tooth to the front of the medial incisor alve- 
olus 

ed whether characters measured on these 
teeth (M3L in wolves, P2L, P2W, and M1L in 
wildcats; Tables 2 and 3) are more variable 
than other characters with Dixon's and 
Grubb's tests for outliers (Sokal and Rohlf 
1981: p. 413). 

Results 

Variability of Dental and Cranial Characters.- 
Male wolves are larger on average than fe- 
males for both cranial characters (Table 2; 
paired-comparison t-test: t = 7.69, df = 36, p 
&lt; 0.001) and dental characters (Table 2; t = 

8.46, df = 26, p &lt; 0.001). We therefore sepa- 
rated sexes when studying variation patterns 
of the different characters. Fossil remains of 
mammals, however, can rarely be separated to 
sex. Because we are interested here in the im- 
plications of this analysis for paleontological 
studies, we also analyzed the variation pat- 
terns of mixed-sex populations of wolves and 
wildcats. 

For each sex separately and both together, 
CVs of dental traits tended to exceed those of 

cranial ones (Table 2). Mann-Whitney U-tests 
were all significant at p &lt; 0.002. 

Within sexes and in the mixed-sex sample 
(Fig. 1 top), a linear regression of CV on mean 
for all traits together yielded a highly signifi- 
cant negative relationship (p &lt; 0.002 for all re- 
gressions), although the fraction of the varia- 
tion explained was not large (0.171 for males, 
0.316 for females, and 0.286 for mixed sexes). 
In each case, a rectangular hyperbolic regres- 
sion produced a better fit (p &lt; 0.001 for each 
regression), and the improvement was always 
significant (at p &lt; 0.005) by ANOVA (Keeping 
1962). The regressions still explain a minority 
of the variation (0.295 for males, 0.491 for fe- 
males, and 0.403 for mixed sexes). Heterosce- 
dasticity was substantial, with variance tend- 
ing to be greater for small means, so the prob- 
abilities must be interpreted cautiously. No 
transformation eliminated this problem. 

Finally, in the hyperbolic regressions the 
dental and cranial traits appeared to fall on 
the same line. Most cranial traits are larger 
than most dental ones, so the magnitude of 
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TABLE 2. Means, CVs, SDs, and principal component scores for the wolf data set. vdD indicates von den Driesch 
1976. Subscript numbers indicate mandible measurements, and superscript numbers indicate cranial measure- 
ments. 

Principal component 
Males Females Males and females (males and females) 

Mean CV Mean CV Mean SD CV 1 2 3 

165.08 3.33 
165.21 3.42 
145.54 3.71 
93.92 2.43 
88.43 3.04 
81.68 2.68 
40.74 4.43 
48.10 4.93 
41.30 4.87 
11.77 4.90 
66.99 5.22 
25.89 5.40 
20.67 8.17 

107.19 3.13 
42.10 3.84 

225.57 4.26 
210.66 3.76 
110.74 4.95 

77.58 3.54 
94.27 3.53 
19.35 5.90 
60.83 3.32 
28.85 4.92 
17.46 7.42 
70.89 4.57 
66.86 3.97 
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TABLE 2. Continued. 

Principal component 
Males Females Males and females (males and females) 

Mean CV Mean CV Mean SD CV 1 2 3 

P3W 5.78 7.06 5.58 7.59 5.68 0.41 7.16 0.67103 0.44174 0.27629 
P4L 14.50 5.46 13.64 5.16 14.16 0.86 6.07 0.78587 0.27129 -0.17745 
P4W 6.85 8.07 6.60 8.42 6.75 0.54 8.03 0.62570 0.45064 0.16296 
M1L 24.93 4.22 23.81 3.92 24.47 1.11 4.52 0.91057 0.21341 0.08664 
MlW 9.49 5.61 8.79 6.39 9.22 0.61 6.67 0.78905 0.46532 -0.06925 
M2L 10.40 5.83 10.03 4.71 10.30 0.63 6.09 0.31017 0.49030 -0.03109 
M3L 5.24 9.11 5.10 8.41 5.17 0.47 9.04 0.02804 0.48258 -0.35416 

the residuals of dental traits tended to exceed 
those of the cranial ones because of the het- 
eroscedasticity noted above; however, there 
was no systematic tendency for the residuals 
of one category to differ in sign from those of 
the other category. Of 27 dental measure- 
ments, 10 exceeded the smallest cranial one, 
whereas of 39 cranial traits 3 were smaller 
than the largest dental one. Within this joint 
domain of mean size, there appeared to be no 
tendency for CV of either class of trait to ex- 
ceed CV of the other class for approximately 
equal means. 

Male wildcats are larger than females in 
both cranial and dental traits (Table 3; cranial 
traits: t = 6.83, df = 34, p &lt; 0.001; dental traits: 
t = 6.89. df = 18, p &lt; 0.001). Thus we again 
analyzed the two sexes separately as well as 
together. As with wolves, dental CVs tended 
to exceed cranial CVs (Table 3). All three 
Mann-Whitney U-tests were significant at p &lt; 
0.001. 

For each sex separately as well as for com- 
bined sexes, a regression of CV on mean (Fig. 
1 bottom) yielded a highly significant negative 
relationship (p &lt; 0.005 for all regressions). As 
with wolves, these regressions explained only 
a small fraction of the variation: 0.167 for 
males, 0.321 for females, 0.204 for the mixed 
sample. All three wildcat data sets were better 
fit by a rectangular hyperbola, and the im- 
provement in fit was always significant at p &lt; 
0.005. The fraction of the variation explained 
was considerably greater: 0.531 for males, 
0.430 for females, and 0.463 for the mixed 
sample. Heteroscedasticity was similar to that 
for wolves. Again dental and cranial traits ap- 
peared to fall on the same hyperbolic line. Al- 
though cranial traits tended to exceed dental 

ones, one of 19 dental traits was larger than 
the smallest cranial trait, whereas one of 35 
cranial traits in males (two in females) was 
smaller than the largest dental one. Over this 
joint domain there did not appear to be a 
trend for cranial CVs to exceed dental ones or 
vice versa. 

Both weasel species resemble wolves and 
wildcats in that dental CVs tended to exceed 
cranial ones. Most samples yielded significant 
negative linear regressions of CV on mean. 
Usually a rectangular hyperbola fit the data 
better. For M. erminea, 30 of 36 samples were 
better fit by the hyperbola (9 of these were sig- 
nificant improvements at p &lt; 0.05). No sample 
was significantly better fit by a straight line. 
The hyperbolic regression explained an aver- 
age of 0.595 of the variation, a figure that rose 
to 0.646 when three anomalous samples were 
omitted. For M. frenata, 24 of 27 samples were 
better fit by a hyperbola, 13 significantly so (p 
&lt; 0.05). No sample was significantly better fit 
by a straight line. On average, a hyperbolic re- 
gression explained 0.640 of the variation. For 
both weasels, all five dental traits were small- 
er than all eight cranial ones, rendering more 
difficult judgments about whether all points 
fall on the same line. A visual inspection sug- 
gested no tendency for the signs of the resid- 
uals to differ between categories. 

Measurement Error.-Measurement error in 
dental characters exceeded that in cranial ones 
(Table 4). Magnitude of measurement error ex- 
ceeded 5% in only 8 of 37 cranial characters 
versus 19 of 22 dental ones (18 cranial but no 
dental characters had less than 1% error). The 
distributions are skewed, so the medians are 
better estimates of central tendency than the 
means are. The median measurement error of 
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TABLE 3. Means, CVs, SDs, and principal component scores for the wildcat data set. vdD indicates von den Driesch 
1976. Subscript numbers indicate mandible measurements, and superscript numbers indicate cranial measure- 
ments. 

Principal component 
Males Females Males and females (males and females) 

Mean CV Mean CV Mean SD CV 1 2 3 

58.55 4.30 
55.23 4.24 
52.28 4.50 
49.04 4.39 
20.06 5.58 
24.48 7.50 

9.73 7.93 
8.01 5.94 

89.16 3.81 
82.04 3.75 
75.01 4.01 
33.18 5.73 
23.33 4.34 
21.75 5.09 
20.67 5.07 
20.19 3.38 
12.80 6.88 
39.39 3.45 
22.13 3.93 
14.24 4.47 
12.39 7.38 
43.35 2.32 
61.50 2.43 
45.38 4.48 
15.64 7.49 
36.49 3.34 
21.96 5.03 
32.12 4.39 
23.88 5.34 
10.74 7.57 
17.60 7.27 
24.57 8.55 
25.50 3.49 
50.51 4.73 
35.01 3.91 

4.15 9.37 
3.16 8.11 
2.18 17.80 
1.51 10.91 
6.39 6.34 
3.16 5.93 

10.51 6.18 
10.99 6.43 
5.05 12.07 
3.17 6.71 
3.14 19.92 
3.83 10.96 
2.84 9.13 
5.32 7.57 
2.59 6.23 
6.99 7.91 
2.98 5.94 
8.08 8.74 
3.24 6.43 

60.85 3.52 
57.42 3.34 
54.28 3.13 
50.98 2.95 
20.50 1.09 
25.64 2.22 
10.22 0.87 
8.48 0.69 

92.38 5.03 
85.01 4.68 
78.07 4.55 
34.81 2.53 
24.55 1.72 
22.08 1.17 
21.06 1.13 
20.70 1.15 
13.67 0.90 
39.81 1.53 
22.21 0.88 
14.20 0.84 
12.11 1.04 
43.43 2.70 
63.68 3.32 
46.95 2.91 
16.41 1.38 
37.76 1.92 
22.85 1.47 
32.12 1.11 
24.72 1.49 
11.37 1.07 
18.30 1.42 
25.39 2.05 
25.94 1.01 
52.33 7.67 
36.28 5.57 
4.38 0.42 
3.33 0.29 
2.17 0.45 
1.50 0.23 
6.57 0.40 
3.27 0.24 

10.72 0.70 
11.21 0.72 
5.23 0.55 
3.32 0.26 
3.38 0.70 
4.09 0.47 
3.06 0.31 
5.45 0.41 
2.67 0.18 
7.19 0.53 
3.08 0.19 
8.18 0.60 
3.35 0.21 

5.78 0.920 
5.82 0.929 
5.77 0.886 
5.78 0.894 
5.30 0.796 
8.66 0.768 
5.55 0.904 
8.17 0.777 
5.44 0.944 
5.51 0.947 
5.83 0.952 
7.25 0.842 
6.99 0.915 
5.28 0.817 
5.38 0.848 
5.56 0.695 
6.75 0.695 
3.85 0.789 
3.98 0.585 
5.90 0.426 
8.57 0.177 
2.70 0.567 
5.22 0.934 
6.19 0.723 
8.40 0.696 
5.08 0.917 
6.45 0.899 
3.47 0.074 
6.05 0.900 
9.43 0.560 
7.73 0.818 
8.08 0.692 
3.91 0.740 
5.95 0.833 
5.21 0.916 
9.63 0.778 
8.72 0.798 

20.90 0.238 
15.57 0.240 
6.11 0.637 
7.20 0.749 
6.50 0,618 
6.40 0.654 

10.51 0.629 
7.75 0.665 

20.76 0.590 
11.40 0.781 
10.29 0.819 
7.43 0.713 
6.73 0.586 
7.32 0.771 
6.14 0.686 
7.35 0.433 
6.31 0.698 
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-0.153 
-0.033 
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-0.035 
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0.028 
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-0.300 
-0.079 
0.148 
0.111 
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0.316 

-0.630 
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-0.166 
0.124 

-0.071 
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0.176 
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-0.414 
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close to the mean, indicating a nearly sym- 
metrical distribution. For dental characters, 
the mean CV was larger: 6.72% (+1.57, n = 

22). The difference, although small, was sig- 
nificant (t = 2.11, p = 0.05). (A t-test was used 
because the variances did not differ signifi- 
cantly.) "Adjustment" of CV by character size 
as a covariate within the two groups did not 
reduce the difference among the groups, 
which remained significant. 

Covariation between Dental and Cranial Char- 
acters. -For the wolves, the three components 
(Table 2) explain 81.2% of the total variation; 
71.3% was explained by the first component 
alone. For wildcats (Table 3), the first three 
components explain 75.3% of the total varia- 
tion; the first component alone accounted for 
56.3%. These data are further illustrated in 
Figure 2. For both wolves and wildcats, all 
characters have high positive loadings on the 
first principal component but differ in re- 
sponse to the second principal component: 
they form two separate clusters, one com- 
posed largely of dental characters (with pos- 
itive scores) and the other composed wholly 
of cranial (non-dental) characters (with nega- 
tive scores). There is little overlap between 
these two groups. Precisely the same pattern 
arose for both wolves and wildcats in each of 
the principal component analyses of the ran- 
domly selected halves of the characters: on the 
second principal component, two distinct 
clusters arose, one largely of dental traits and 
one wholly of cranial traits. Wolf measure- 
ments vdD1o and vdD16 are the length of the 
lower and upper molar rows, respectively. 
Not surprisingly, these measurements covary 
with dental measurements; because wolf mo- 
lars have no spaces between them, these are 
simply the combined measurements of these 
teeth. The same is true for wildcat measure- 
ment vdD5, the length of the lower tooth row. 
The few other exceptions (vdD20 for wolves, 
vdD,o, vdD17, vdD18, vdD19, vdD20, vdD21, 
vdD22, vdD28 for wildcats) are also cranial 
characters clustering with the dental charac- 
ters. For wildcats, though positive on the sec- 
ond component, vdD,o, vdD17, vdD18, and 
vdD19 are close to the cluster of cranial traits. 

Variability of Vestigial Teeth. -Coefficients of 
variation taken on the putative vestigial teeth 
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FIGURE 2. Top, character scores for dental (open 
squares) and cranial (closed squares) traits on first two 
principal components, for wolves of both sexes mixed. 
Open triangles represent two traits (lengths of upper 
and lower molar tooth rows) that, although cranial, are 
simply combined measures of dental traits because wolf 
molars have no spaces between them. Bottom, character 
scores for wildcat traits (symbols as for wolves) for both 
sexes mixed. Open triangle represents length of lower 
tooth row; there are no spaces between these teeth. 

were larger than those of all other traits. Table 
5 lists the five largest CVs, sorted from Tables 
2 and 3. P2L, P2W, and M1L lead the table for 
wildcat data; their CVs were twice the mean 
value. Among the wolf data, M3L had the larg- 
est CV. Only two of these values were statis- 
tical outliers by Grubb's test. Dixon's test 
found no outliers, because the three top val- 
ues, all very different from the others, were 
very similar and the test requires a large value 
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TABLE 5. Largest values of coefficients of variation (CV) for teeth, plus mean CV for all teeth, as well as character 
codes. M3L for wolves and P2L, P2W, and M1L for wildcats are considered vestigial and are marked by "v". 

Wolves Wildcats 

Both Both 
Rank Males Females sexes Males Females sexes 

1 9.11v 8.90 9.21 25.19*,v 19.92*,v 20.90V 
M3L CsupW P3W P2L M1L P2L 

2 8.83 8.42 9.04v 24.17v 17.80v 20.76v 
P3W P4W M3L P2W P2L M1L 

3 8.24 8.41v 8.37 19.20v 12.07 15.57v 
P2W M3L P2W M1L P4Wa P2W 

4 8.07 8.21 8.05 8.65 10.96 11.40 
P4W P3W CSupW P4Wa CinfL CinfL 

5 7.34 7.88 8.03 7.60 10.91v 10.51 
P4Wa P2W P4W CinfL p2W P4Wa 

Mean 6.01 6.10 6.47 9.02 9.09 9.63 
* p &lt; 0.05, one-tailed Grubb's test. 

of Y3 - Yl. However, the qualitative order of 
the CVs supports the conclusion that vestigial 
teeth are, in fact, the most variable. 

Discussion 

Variability of Dental and Cranial Characters.- 
Our results demonstrate a negative nonlinear 
relationship between the means and the co- 
efficients of variation of the dental and cranial 
characters studied in wolves and wildcats. 
Teeth are generally smaller than cranial traits 
and are more variable on average. Exactly the 
same relationship obtains for the two weasel 
species. 

If the difference in magnitude of CV be- 
tween dental and cranial traits results from 
measurement error, then the mean CV among 
individuals within the two groups, particu- 
larly for dental characters, should be smaller 
in the repeated-measurements study. Using 
the mean of five measurements, rather than a 
single one, reduces random measurement var- 
iations among skulls. This should have had 
the effect of reducing the difference in mean 
CV between the two groups. 

This reduction did not happen: both mean 
values of CV were larger in the measurement 
error study than in the previous one. (The dif- 
ference may be due to the fact that a different 
person made the measurements, or to the par- 
ticular selection of skulls for this study.) Thus 
dental characters are inherently more variable 
among individuals than cranial characters are 
(a pattern that would have been exacerbated 

had we not omitted repeated measurements of 
seven traits), not only because of measure- 
ment error associated with their smaller size. 
Measurement error in the systems we studied 
seemed to us to be less a product of measure- 
ment size, and more a result of the particular 
structure of a morphological trait, the clearcut 
landmarks for measurement, its proximity to 
other characters (such as other teeth), the ease 
with which calipers can be placed, etc. 

Moreover, the phenomenon of higher vari- 
ability in teeth occurs in carnivores in a very 
wide spectrum of sizes. Wolf upper carnassi- 
als are three-fourths as long as the least weasel 
(Mustela nivalis) skull, yet within species (and 
sex) this general phenomenon obtains. Coef- 
ficients of variation of least weasel skull 
lengths (from Holmes 1987) resemble those of 
wolf and wildcat skull lengths and are much 
lower than those for wolf dental measure- 
ments of similar size. The range of variability 
for all traits of the different sexes and species 
is similar in spite of order-of-magnitude dif- 
ferences in absolute size. 

An inverse relationship between mean and 
coefficient of variation has occasionally been 
noted in various studies for many years (e.g., 
Alpatov and Boschko-Stepanenko 1928; Bader 
and Hall 1960). Yablokov (1974) proposed as 
an empirical rule that, within one organ sys- 
tem of a population, characters of the same di- 
mensionality tend to show a negative corre- 
lation between the mean and the CV. He dem- 
onstrated this phenomenon for a variety of lin- 
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ear dimensions of pinniped skulls, among 
other traits. 

Pearson and Davin (1924) suggested a rea- 
son for this inverse hyperbolic relationship 
that was later developed by Lande (1977). 
Lande noted that for both bats (Bader and Hall 
1960) and pinnipeds (Yablokov 1974) the CVs 
of composite measures are among the small- 
est. He suggested that this fact may result 
from a mathematical constraint when one 
compares the variation of a whole to that of its 
parts. The more parts in a morphological fea- 
ture, the lower should be the CV (Lande 1977). 
Soule (1982) suggested the term "allomeric 
variation" for trends of variation attributable 
to changing numbers of components; his prin- 
ciple of allomeric variation predicts an inverse 
relationship between the CV and the square 
root of size. In this formulation, Soule (1982) 
equated greater size of the mean with higher 
complexity. 

The mammalian jaw and skull result from 
the consolidation of a number of different 
parts with different embryological origins, 
controlling factors, and rates of growth (Atch- 
ley et al. 1985a,b). Viewing each such devel- 
opmental unit as a part from which the whole 
is composed may explain the decrease of CV 
with size (increased size is usually equivalent 
to a greater number of developmental units). 
After all, Lande's (1977) explanation for this 
phenomenon rests on the fact that parts are 
correlated to some extent with one another; in 
the mammalian skull and jaw it is clear that 
the developmental trajectories of the various 
component parts have been extensively inte- 
grated during ontogeny (Atchley 1987), and 
this integration necessitates some correlation 
between them. 

Pengilly (1984) ascribed the negative rela- 
tionship between size and CV in fox dental 
measurements to the higher complexity of 
larger teeth. If larger and more complex teeth 
(with more roots and cusps) are indeed com- 
posed of a greater number of developmental 
units regulated perhaps by a greater number 
of genes, then they too may be expected to 
have reduced variability as compared with 
simple teeth. The developmental process of 
tooth formation is currently being unraveled 
(e.g., Jernvall 2000; Jernvall and Thesleff 2000; 

Jernvall et al. 2000), and although analyses of 
gene expression patterns have revealed asso- 
ciations of many genes with tooth morpho- 
genesis, it appears that genes involved in cusp 
development are the same among all individ- 
ual cusps, and that, at the level of molecular 
signaling, all cusps are alike (Jernvall and 
Thesleff 2000). Jernvall (2000) concludes that 
the generation of mammalian cheek-tooth 
complexity may have required very little in- 
crease in developmental complexity. Species- 
specific cusp patterns form through reiterative 
addition of new secondary enamel knots with- 
in an existing tooth-crown base (Jernvall and 
Thesleff 2000), but it is difficult to see if the 
developmental process implies the kind of 
complexity that can be ascribed to cranial fea- 
tures. 

Studying dental traits of the American mar- 
ten (Martes americana) and the gray fox (Uro- 
cyon cinereoargenteus), Polly (1998a) argues 
that CV is likely to be strongly negatively cor- 
related with size. This correlation, in his view, 
reflects a combination of the fact that CV is a 
ratio and the fact that measurement error is in- 
evitable. Thus, as the mean size of a trait ap- 
proaches zero, even if the standard deviation 
of that size were to approach zero, the mea- 
sured standard deviation would not because it 
would include the omnipresent measurement 
error. This would be true even if measurement 
error were not a function of size. Because size, 
approaching zero, is in the denominator of CV, 
whereas SD, which does not approach zero, is 
in the numerator, at some point as size de- 
creases, CV must increase. In short, Polly 
(1998a,b) saw the relationship of size and CV 
as artifactual, rather than as an indication of 
greater variability for smaller traits, and he 
believed that the artifact is particularly mis- 
leading in comparisons of variables differing 
in size by an order of magnitude (as teeth and 
cranial traits often do). 

By inspection of the plots of his data, Polly 
(1998a) concluded that CVs can be used with- 
out fear of the artifactual relationship with 
size if the measurement error is less than 0.10. 
For the wolf skulls, all but two of the 36 cranial 
characters pass this test, but 11 of the 24 dental 
traits fail it. Thus, it is certainly possible that 
at least part of the generally greater variability 
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for teeth than for skulls in our study is an ar- 
tifact of measurement error. However, we can- 
not conclude that this entire pattern reflects 
measurement error. Further, none of the alter- 
native measures of variability suggested by 
Polly (1998a) solves the problem, because they 
all reside in his attempt to produce an ad hoc 
index that, with his data, shows no relation- 
ship of the index with size. But this approach 
is paradoxical. There may be a real relation- 
ship between size and variability, unrelated to 
measurement error, and our goal should be to 
reveal it rather than to obliterate it. Thus,faute 
de mieux, we follow many others (e.g., Hilborn 
and Mangel 1997) in continuing to use CVs, 
albeit with caution. As noted above, our re- 
gressions of CV on mean size left much vari- 
ation in CV unexplained, and, over the joint 
size domain, there was no systematic tenden- 
cy for residuals of the two sorts of traits to fall 
on different sides of the regression line or to 
differ in magnitude. 

Teeth may still be extremely valuable in pa- 
leontology but not because they have low var- 
iability. In general, teeth are relatively more 
variable than cranial characters and in this re- 
spect are not the best diagnostic traits for dis- 
tinguishing between closely related taxa. This 
pattern contradicts that implied in some of the 
paleontological literature. Moreover, the high- 
er relative variability of teeth renders the pre- 
diction of population means on the basis of 
one or few dental measurements less accurate 
than a prediction based on one or few cranial 
characters. 

Covariation between Dental and Cranial Char- 
acters.-For both wolves and wildcats, all cra- 
nial and dental characters score positively on 
PC1. The first principal component is often 
viewed as a size component, an interpretation 
that is rational if all loadings are positive and 
if they do not differ tremendously in magni- 
tude (Jolicoeur and Mosimann 1960; Book- 
stein 1989). These conditions are met by our 
data sets. Both data sets separate into two 
clusters on PC2, which can be interpreted as a 
"shape component" (Jolicoeur and Mosimann 
1960; Bookstein 1989). Such clustering is com- 
monly interpreted as resulting from a func- 
tional linkage (e.g., Neff and Marcus 1980), or 
a genetic/developmental constraint within 

each cluster. The facts that both wolf and wild- 
cat data produced the same dichotomy, be- 
tween most cranial traits on the one hand and 
all dental traits plus a few cranial ones on the 
other, and that each half of each data set pro- 
duced the same dichotomy when analyzed 
alone, argue strongly that this pattern is not an 
artifact of having very many traits measured 
on relatively few specimens. 

There is a growing number of multivariate 
morphological analyses of the developmental 
trajectories and morphological integration of 
the mammalian skull and jaw (e.g., Cheverud 
1982, 1989, 1995, 1996; Atchley 1987; Zelditch 
1988; Roth 1996; Cheverud et al. 1997). Studies 
of the interrelationships of dental characters 
and morphogenetic fields in mammalian den- 
titions have been common for many years 
(e.g., Butler 1939; Lombardi 1975; Osborn 
1978), but the interface between mammalian 
teeth and skulls has received less attention. 
The notion that teeth and crania are under dif- 
ferent genetic control is in no way heretical 
(Kieser and Groenveld 1988, 1990; Shea and 
Gomez 1988; Kieser 1990). Also, the clustering 
of most cranial characters is not surprising. 
After all, although the mammalian skull and 
jaw result from the consolidation of a number 
of different parts with different embryological 
origins, controlling factors, and rates of 
growth (Atchley et al. 1985a,b), the develop- 
mental trajectories of the various component 
parts have been extensively integrated during 
ontogeny (Atchley 1987). 

Teeth, on the other hand, may well be con- 
trolled by genetic factors other than those gov- 
erning the cranium (cf. Shea and Gomez 
1988). Teeth form spatially separate units, so 
an integration of dental characters similar to 
that for cranial characters is unnecessary. 
Nevertheless, we see here that dental traits do 
cluster. For adaptive evolution to proceed ef- 
ficiently, traits that develop and function to- 
gether should be morphologically integrated 
and inherited together (Cheverud 1982, 1995, 
1996). This clustering could conceivably be as- 
cribed to functional constraints: one might 
view the teeth as a functionally linked set of 
characters used for capturing, handling, and 
processing prey. If the issue were only func- 
tional integration, however, one might expect 
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a more complex relationship, in which cranial 
characters related to jaw musculature of mas- 
tication (such as temporal fossa length and the 
width of the zygomatic arch) cluster with the 
dentitions. We see no such clustering, so it ap- 
pears that the functional link is outweighed by 
genetic correlations among dental characters 
and separate genetic correlations among cra- 
nial characters. The few cranial traits that clus- 
ter with the dental ones have no functional 
significance that explains this pattern. 

Wolves and wildcats differ considerably in 
cranial morphology and killing behavior. The 
similarity in the results of our present analysis 
of these two species suggests the generality of 
the cranial and dental dichotomy outlined 
above. Similarly, Voss (1988), who carried out 
a PCA of 15 populations of ichthyomine ro- 
dents, found that the variables with the high- 
est loadings on the principal shape compo- 
nent were teeth or measurements of interden- 
tal spaces. He suggested that this factor might 
represent a system of morphological integra- 
tion within the masticatory apparatus, al- 
though he considered the possible participa- 
tion of other functional influences. High load- 
ings on the principal shape component can 
also be seen for cheek-tooth row lengths in 
muskrats (Ondatra zibethicus) (Pankakoski et 
al. 1987) and pocket gophers (Thomomys bottae) 
(Smith and Patton 1988). 

Various studies have interpreted different 
patterns depicted by cranial and dental char- 
acters as resulting from differences in evolu- 
tionary rates (e.g., Marshall and Corruccini 
1978; Van Valkenburgh 1988). Dental allome- 
try in dwarfed lineages differs from the ex- 
pected allometric relationship in some cases 
but not in others (e.g., Gould 1975; Prothero 
and Sereno 1982; Shea and Gomez 1988; Roth 
1990), perhaps reflecting an extreme case of 
differences in evolutionary rates between den- 
tal and cranial traits. Other studies (Dayan et 
al. 1989a,b, 1990, 1992; Dayan and Simberloff 
1994a,b) suggested the operation of different 
selective pressures on teeth and skulls. The 
separation of these two character sets on the 
second component is consistent with different 
selective regimes and different evolutionary 
rates for teeth and crania. Thus the relation- 
ship between tooth size and body size might 

change both within and between species, de- 
pending on selective regimes, although a 
functional relationship between the two must 
be maintained. 

Mammalian systematists base specific and 
subspecific designations, reflecting probable 
phylogenetic relationships, on various mor- 
phological characters, few of which are dental. 
On the other hand, the systematics and phy- 
logenetic relationships of fossil mammals are 
largely based on dental material (e.g., Hussain 
1971; West 1979; Schoch and Lucas 1981; Le- 
gendre 1982). Using different groups of char- 
acters that might be under different selective 
pressures may yield different results. 

A clear resolution of the genetics of mor- 
phological integration is required (e.g., Kieser 
1990; Hillson 1996). At this stage we simply 
suggest that variation in tooth size best esti- 
mates variation of size and shape of all teeth 
but provides a poorer estimate of the variation 
of cranial size. This observation accords well 
with the fact that, within species, although 
cranial size is apparently a good estimator of 
body weight (see Gould 1975; Janis 1990), 
tooth size sometimes is not (e.g., Damuth and 
MacFadden 1990; Fortelius 1990; Janis 1990). 

Variability of Vestigial Teeth.-CV of the third 
lower molar of Israeli wolves, although high, 
is what would be expected on the basis of the 
general relationship between size and CV. 
Thus in terms of variability, there is no sup- 
port for viewing this tooth as vestigial. Al- 
though its occlusion with the second upper 
molar may be simple (Gingerich and Winkler 
1979), it does occlude with this tooth in what 
appears to be a fully functional manner, and 
it retains the pattern of its cusps. 

By contrast, the high CVs of the second up- 
per premolar and first upper molar of the 
wildcat are indeed outliers to the regression. 
These teeth are very small and are often miss- 
ing entirely. The second upper premolar is es- 
pecially small and is absent altogether in some 
felid species (Glass and Todd 1977). Even in 
species where this tooth occurs, an apprecia- 
ble portion of the population lacks it (Felis ca- 
tus [Searle 1959; Todd et al. 1974; Bateson 
1894; cited in Glass and Todd 1977] and Felis 
bengalensis [Glass and Todd 1977]). Moreover, 
Glass and Todd (1977), who did not measure 
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sizes of second upper premolars in their study 
of Felis bengalensis, ranked them into four cat- 
egories: rudimentary (present as a disorga- 
nized piece of enamel), through very small 
(single root and simple crown), small (sug- 
gestion of double root or crown), and medium 
sized (double root and/or double cusp). These 
observation suggest that this non-occluding 
tooth is indeed vestigial in wildcats. 

Additionally, cats do not masticate meat 
(Romer 1953), and the peglike first upper mo- 
lar does not occlude with any tooth of the low- 
er jaw, so it serves no clear function. The ex- 
treme variability of these teeth conforms well 
to their apparent lack of (or extremely re- 
duced) function. 

The importance of understanding the rela- 
tionships between size and variability prior to 
drawing evolutionary or selective inferences is 
obvious. In particular, one should bear in 
mind that vestigial teeth are reduced (e.g., 
Kurt6n 1953) and therefore also may be the 
most variable on size grounds alone. It is es- 
sential to separate these two effects. 

Conclusions 

Teeth are usually the best-preserved ele- 
ment of fossil vertebrate remains and are 
highly diagnostic in mammals, so their im- 
portance to paleontological, systematic, and 
evolutionary research cannot be overempha- 
sized. Because of their central role, the study 
of teeth must be conducted with a clear un- 
derstanding of their variability and relation- 
ships to other characters. 

Teeth are generally more variable than cra- 
nial characters in carnivores; this is not just a 
reflection of measurement error. Thus, al- 
though teeth are extremely valuable for pale- 
ontological research, their value does not re- 
side in low variability. In terms of their vari- 
ability, teeth are not the best taxonomically di- 
agnostic character at the species level. 
Nevertheless, studying the extreme case of 
vestigial teeth clearly confirms that natural se- 
lection affects patterns of variability. Results 
of the principal components analysis show 
that dental and non-dental traits largely sep- 
arate on the shape factor. This separation may 
well reflect the different selective pressures 
operating on skulls and teeth, as well as dif- 

ferent genetic constraints. Thus the function- 
al/developmental integration of teeth and 
skulls may be loose enough to allow different 
patterns of covariation in different conspecific 
populations, as well as among ecologically 
similar species. 
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